

Git Doesn’t Have to be Hard

Git Doesn’t Have to be Hard

Peter S. Conrad

Copyright ©2021 by Peter S. Conrad

All rights reserved.

To Mel, who is never satisfied with “good enough.”

vii

Contents

Preface ... xv

How to Use This Book .. xvii

Command Examples .. xvii

What you Should Know ... xvii

Wildcards .. xviii

Git Doesn't Have to Be Hard

Introduction: Why is Git So Hard? ...3

Concepts

Source Control ...7

Centralized Source Control ..7

How Git is Different ...8

How Git Works .. 11

Working with Git .. 15

Basic Source Control with Git ... 15

Sharing Your Work .. 16

Branching .. 17

Branching Strategies ... 18

The GitHub Flow ... 18

Git Centralized Workflow ... 20

Branching Problems .. 20

How It All Fits Together .. 23

viii

Graphical Git ... 23

Git on the Command Line ... 24

Git Online .. 24

Reviewing a Pull Request .. 25

Get Started

Get Set Up with Git ... 29

Get Git .. 29

Set up a Repository ... 29

Set up a Repository with Bitbucket and Sourcetree............. 30

Set up a Repository with GitHub and GitHub Desktop 31

Result .. 31

Tutorials .. 33

Tutorial: Day to Day Work in a Git Client 33

Create a Working Branch .. 33

Commit Some Changes ... 34

Push and Create a Pull Request .. 35

Review a Pull Request .. 36

Approve a Pull Request .. 37

Merge a Pull Request .. 37

Tutorial: Working on the Command Line 38

Switch to a Working Branch ... 38

Commit Some Changes ... 39

ix

Push and Create a Pull Request .. 39

Stay out of Trouble ... 41

Choose the Correct Branch... 41

Pull Often .. 41

Think before Committing, Pushing, or Branching 41

Use a Simple Branching Strategy .. 41

Be Watchful .. 42

Write Good Commit Messages ... 43

Fun with Git

Command Line Tips and Tricks ... 47

Authenticate Git on the Command Line 47

Cache Your Credentials... 48

Linux ... 48

macOS ... 49

Windows ... 49

Examine the Past .. 51

Git Log ... 51

Git Reflog .. 55

Save Some Keystrokes .. 56

Compare Branches or Commits .. 57

Checkout Old Commits ... 59

Label Commits with Tags .. 60

x

Share Tags ... 60

Clean Up ... 62

Ignore Irrelevant Files ... 62

Delete Old Branches ... 62

Rebase .. 63

Move, Rename, or Delete Files .. 65

Git Move ... 65

Git Remove ... 65

Pack Up ... 67

Create a Git Wiki ... 69

Git Wiki Structure ... 69

Set Up a Wiki .. 70

Set Up a Wiki in Bitbucket and Sourcetree 70

Set Up a Wiki in GitHub and GitHub Desktop 70

Work with Content on the Host ... 71

Work with Content Locally ... 71

Clone a Wiki in Bitbucket and Sourcetree 71

Clone a Wiki in GitHub and GitHub Desktop 72

Clone a Wiki on the Command Line 72

Tutorial: Create Structured Wiki Content 73

Create Some Content Locally ... 73

Take a Look ... 73

xi

Publish a Website ... 75

Bitbucket... 75

GitHub Pages .. 76

Reference

Basic Git Operations ... 79

Pull .. 81

Pull in Sourcetree ... 81

Pull in GitHub Desktop.. 81

Pull on the Command Line ... 81

Stage and Commit .. 83

Stage and Commit in Sourcetree .. 83

Stage and Commit in GitHub Desktop 85

Stage and Commit on the Command Line 85

View Your Changes ... 87

View Your Changes in GitHub Desktop or Sourcetree 87

View Your Changes on the Command Line 88

Push .. 89

Push in Sourcetree .. 89

Push in GitHub Desktop .. 89

Push on the Command Line .. 89

Create a Branch .. 91

Create a Branch in Sourcetree .. 91

xii

Create a Branch in GitHub Desktop 93

Create a Branch on the Command Line 94

Create a Pull Request ... 96

Create a Pull Request in Bitbucket and Sourcetree.............. 96

Create a Pull Request in GitHub and GitHub Desktop 97

Create a Pull Request on the Command Line 99

Approve and Merge .. 100

Merge a Pull Request in Bitbucket 101

Merge a Pull Request in GitHub ... 101

Trouble ... 103

Edited in the Wrong Branch ... 103

Edited the Wrong File ... 104

Merge Conflict .. 105

Detached HEAD .. 106

Staged by Mistake .. 106

Committed by Mistake ... 107

Committed in the Wrong Branch ... 108

Lost Some Changes to History .. 108

Retrieve All Changes from an Old Commit 108

Grab an Old Version of a File .. 109

Pushed by Mistake ... 109

Revert a Bad Push ... 110

xiii

More trouble .. 111

Glossary .. 113

xiv

xv

Preface

If you’re a seasoned engineer working in a large team, this book is
probably not for you. You probably eat commit hash for breakfast and
wash it down with a cup of rebase.

On the other hand, if you’re new to Git, this book will help you get
started and stay out of trouble. You’ll learn the basics of working with
Git day to day, how to collaborate with others, and a few fun tips and
tricks.

Git Doesn’t Have to Be Hard is meant for people who are relatively new
to Git. If you’re a content developer collaborating with engineers, a
tech writer working with docs-as-code, or a programmer who needs to
track and share your work—this book is for you.

The first few chapters, in the "Concepts" section, explain how Git
works, and why it’s better than traditional centralized source control.
Rather than starting with the inner architecture of Git, these chapters
explain what problems Git is trying to solve, and what that means to
you as a user. "Get Started" helps you get set up with an online Git host,
teaches you how to get started, and tells you how to avoid the most
common problems. "Fun with Git" gives you some tips and tricks to use
once you’re comfortable with Git. A reference chapter at the back of
the book provides detailed instructions for the basic Git operations.

If you need to use Git but don’t know how, read on!

xvi

xvii

How to Use This Book

This book is short enough to read all the way through, but you don’t
have to.

• To learn how Git works, read “Concepts” on page 5.

• To use Git right away, read “Get Started” on page 27.

• If you know a little about Git already, read “Fun with Git” on page
45.

• If you’re using Git and you’ve gotten into some kind of trouble,
see “Trouble” on page 103.

Command Examples

For command line instructions, examples that don’t include output
from a command also omit the command prompt:

git branch

To distinguish the output from the command you type, examples that
include command output also show the prompt:

$ git branch

* main

Although the prompt shown in the examples is a dollar sign ($), it can
be different on different systems. On Windows, for example, it is often
a greater-than sign (>).

TIP Don’t type the prompt.

Options and parameters that you need to add are in {brackets}.

In the printed instructions, some commands spill over from one line to
the next. When you use one of these commands, type it all on one line,
keeping file paths together.

xviii

What you Should Know

It’s helpful to have some familiarity with the command line, including:

• How to get to the command line

• Navigating and listing directories and files

• Specifying files with wildcards

• Running commands, including parameters and options

Wildcards

Wildcards are characters that let you specify groups of files or
directories with similar names. There are two main wildcards:

• * - stands in for a group of characters

• ? - stands in for a single character

If you want to specify a single file, you use its name. For example: my-
file.txt.

If you want to specify all files that end in .txt, you can use the *
wildcard: *.txt.

The ? wildcard, lets you specify filenames where a specific character
varies: m?-file.txt specifies all files that match the name, but with
any character in the ? spot. That is, m0-file.txt, mx-file.txt, and
mW-file.txt would all match.

Any of the Git procedures (and the .gitignore file) can use wildcards
to specify multiple files.

xix

Examples

Add the my-file.txt file:

git add my-file.txt

Add all .txt files in the current directory:

git add *.txt

Add files named file01, file02, and so on, regardless of file
extension:

git add file??.*

xx

1

Git Doesn’t Have to Be Hard

GIT DOESN’T HAVE TO BE HARD

2

3

Introduction: Why is Git So Hard?

I remember an engineer patiently explaining to me how Git works:

There’s your working tree, your staging environment, your
local and remote repos, and everything’s really just a pointer,
and so on, and so on…

I never understood it—so any time I got myself into trouble with Git, I
never knew how to get myself out again. Now that I understand it
better, I realize that there are three reasons people have trouble
understanding Git.

First, Git is distributed rather than centralized. If you’ve ever used
centralized source control, Git seems different from everything else
you know. Concepts like checking in don’t mean the same things in Git
that they do in centralized source control.

Second, Git tracks changes rather than files. If you are used to
circulating documents with version numbers, it’s hard to make the
switch to "unversioned" files.

Finally, Git is usually explained badly, in a hurry, by someone who
knows too much about Git to think about the basics anymore. That’s
what happened to me. It took many years to undo the effects of the bad
explanation. It’s even worse if the explanation comes with a diagram.

Git is different from other source control tools, but it doesn’t have to
be hard to use. This book explains the important concepts behind Git,
the basics of its use, and how to get out of a few common kinds of
trouble.

4

5

Concepts

CONCEPTS

6

7

Source Control

Version control, or source control, is a system for keeping track of file
versions and changes in a project. Most often, source control is used
for tracking application codebases. With the rise of the docs-as-code
movement, it has also become useful for documentation. It’s now
common to use source control systems for DITA, Markdown,
reStructuredText, AsciiDoc, and other plain text markup languages.
The goal of source control is to guarantee that files are stored securely
and made available to the right people, that the contents of the files are
known and verified, and that changes are tightly managed. With source
control, you can see every change and who made it. If needed, you can
roll back to previous versions of any file.

Centralized Source Control

Traditionally, source control has been centralized: a single central
repository of files provides a single source of truth. Whatever is in the
central repository is legitimate; everything else doesn’t matter. To
make changes to a file, you "check it out," like a library book. While you
have a file checked out, you can edit it on your own computer (your
"local machine"). While you’re working on it, the repository’s copy of
the file is locked so that no one else can make changes to it.

When you’re done editing the file and your work is tested and
approved, you check the file back in. It is then available for other

8

people to check out. In this way, centralized source control ensures
there’s only one version of the truth.

There are downsides to centralized source control:

• Only one person can work on any given file at a time, creating a
bottleneck.

• Everything that’s checked in becomes the truth, including bugs.

• Server traffic from a high volume of check-ins can cause lagging.

• The central repository is a single point of failure.

This last problem is a fatal weakness. If something happens to the
repository, the whole project can be lost.

How Git is Different

The solution to all the aforementioned problems turns out to be
decentralization. Because Git doesn’t rely on the central repository as a
single source of truth, there’s neither a bottleneck nor a single point of
failure. Branching is easier, making it possible to insulate people from
each other’s work and curb the spread of bugs. People can work in
parallel without worrying about server traffic or locked files. With Git,
every contributor has a complete source control system with a full
copy of the repository.

This means thinking a little differently. When you use Git, you don’t
have to "check out" files from a central repository, because all the
source control happens locally. You don’t lock files, because you don’t
have to worry about someone else trying to work on files on your own
computer. You don’t get a central source of truth—but you don’t need

9

one. You are creating and sharing the truth as you work. If two
contributors disagree on the truth, there is a way to decide which
version to keep.

In this way of thinking, file versions become far less interesting than
changes. If two people work on the same file, it’s possible to see who
made which changes and when. It no longer makes sense to think
about the version of a file, because changes by different people can
overlap chronologically. Instead of keeping score on file versions, Git
tracks changes. When you roll forward or backward in time, or if you
switch branches, Git applies the changes to show you the correct
"versions" of the files. In fact, changes can be lifted from one point in
time and "replayed" elsewhere.

There is usually a central repository, but it exists only to keep
everyone in sync. Each contributor’s own local repository is the source
of truth. If the central repository were destroyed, it could be restored
in minutes by anyone who had downloaded the most recent changes.

To sum up:

• Git tracks changes, not files.

• Source control happens on your computer, not a server.

• You are the source of truth.

Once you get used to thinking about changes rather than files,
everything else about Git becomes easier to understand. The next
section gives a little more detail about how Git works.

10

11

How Git Works

Git doesn’t care about files. Git cares about changes. As you add, edit,
and delete files, Git tracks the changes you’re making. From time to
time, you create a commit, a snapshot that groups a bunch of changes
together and gives you a point in time you can roll back to if needed.

With Git, all you need to do is:

• Make changes.

• Tell Git which ones to track - this is called staging.

• Track them - this is called committing.

When you commit your work to Git, you aren’t telling Git about new
versions of files. You are telling Git about a group of changes you’ve
made since the last commit. Editing or adding a file is a change—and
so is deleting a file.

Git doesn’t just grab every change, because it doesn’t know which
changes you intend to keep in source control. You might decide to
commit at a certain point, but there’s one file that’s not really ready to
commit yet. Or there might be a file that’s in your directory by mistake,
or some output or something that you don’t need to track. Git gives
you the opportunity to tell it what changes to track.

Committing is really two steps:

1. Stage: choose what to include in a group of changes.

2. Commit: save the changes in Git.

12

When people talk about a staging area, they mean the list of changes
you are preparing to formalize in Git. The add command really means
add this change to the list. Remember: you’re tracking changes, not
files. When you delete a file from Git, that creates a change that you
must add!

As you go along, working and committing, you end up with a history of
commits. You can roll back to any commit, if you need to.

When you roll backward or forward in time or switch branches, Git is
just pointing to a particular commit that represents the way things
were on that branch at that time. Git automatically applies all the
appropriate changes to your working directory. The working directory
becomes the correct view of that version of the files.

13

If you’re collaborating with a larger team, it’s useful to keep the main
branch clean and always releasable while everyone’s working. With
Git, you can create working branches to keep people’s work separate
until it’s ready to merge to the main branch. You can create working
branches just for your own tasks, or a smaller team can have one or
more long-standing working branches. In either case, the concept is
the same. It’s a series of commits independent from the main branch
(or any other branch).

When it’s time, those changes get merged back into the main branch
(or whatever development branch your organization uses). Usually
this happens on the central repository, also known as the remote repo,
where people can have a chance to review it. When you work with Git,
you frequently pull down the latest changes to your local repository
(or repo), to make sure your work stays in sync with what everyone
else is doing. When you’re ready to share your work with others, you
push your changes up to the remote repo so they can review your
work. Once it’s approved, you can merge it.

14

15

Working with Git

Let’s start with the most familiar workflow: working on files and
saving them, without using source control.

By adding a few steps to this basic way of working, Git lets you
perform source control, create branches, and share your work with
others.

Basic Source Control with Git

All the source control happens on your own computer. All you need to
do is tell Git from time to time which changes you want tracked. Just as
save writes your files to disk, commit is like "saving to Git." Before
committing, of course, you have to tell Git which changes you want to
save. This is called staging your changes.

When you stage and commit changes, you’ve done all you need for

source control on your local computer. You can see the whole history
of your commits, and can roll back to any of them to see earlier
versions of your work.

16

Sharing Your Work

To share your changes with others, you push your changes to a central
repository called the remote.

Everyone else who is working on the project pulls the latest changes
from the remote to their local repo. Later, they push their own
changes, and so on. That keeps everyone in sync, and also means that
everyone’s personal copy of the project (their local repo) is as much a
source of truth as the central repo. You could blow away the central
repo and life would just go on.

When you start working on a new task, you pull to make sure you’re
up to date. When you are ready to show your work to others, you push.

NOTE Pulling consists of two operations: fetching changes
from the remote repository, and merging them with
your local repository. When you pull, Git automatically
fetches and merges changes from the remote repo. It’s
more common to pull than it is to fetch and merge
separately.

17

Branching

If there are more than a few people working on the same project, it’s a
good idea to separate people’s work so they don’t cause problems for
each other. Git does this by branching work into different commit
histories.

NOTE The main branch is usually called main or master.
This book uses main, which is the newer name.

There are many branching strategies, from very simple to very
complicated. Unless you have a reason to do something complex, you
should keep your branching strategy simple. The GitHub Flow is one
simple and effective branching strategy (see “The GitHub Flow” on
page 18). In this workflow, instead of merging directly, you create a
pull request so that others can review your work.

18

Theoretically, you can start a new branch anywhere. You could start a
working branch from main, then start a branch off of the working
branch to try an experiment. Later, you might merge it back into your
working branch, where it will be merged to main later, or you might
abandon it if you didn’t like the results of the experiment. In other
words, you can have branches of branches.

Branching can be as complex as you need it to be. Some teams use very
complicated branching strategies. In most cases, however, it’s a good
idea to keep your branching strategy as simple as possible.

TIP Keep your branching strategy simple.

Branching Strategies

Every project needs a branching strategy that everyone on the team
follows consistently. The GitHub Flow is simple and powerful, suitable
for many kinds of work. For very informal projects with a small
number of contributors, the Centralized Git Workflow is sometimes
sufficient. There are more complicated strategies such as the GitFlow,
which adds several long-standing branches, and the Forking Workflow,
which involves merging among multiple repositories.

There is no one strategy that works for every team. Start simple and
add sophistication when needed. The GitHub Flow is a good starting
point.

The GitHub Flow

The GitHub Flow is a popular branching strategy that makes it easy for
team members to work independently, merging their changes back to
the main branch as needed. The GitHub Flow is simple, helping to
avoid branching problems. The idea is to keep the main branch

19

releasable at all times. All work is done in working branches that get
merged to main only after approval.

The rhythm of work in the GitHub Flow follows these steps:

• Branch, to isolate your work from the main branch.

• Pull, to make sure you are up to date with changes others have
made.

• Work and save as usual.

• Stage and commit whenever you get to a stopping place.

• Pull before pushing.

• Push, creating a pull request, when you want others to review
your work.

• Merge, once your changes are approved.

In the GitHub Flow, working branches don’t have to stick around for
long. You might have one branch or several open at one time, merging
each back to main as the work is completed.

The key to the GitHub Flow is to branch from main and merge back to
main. Whenever you create a new branch, make sure you’re on the
main branch first—and don’t forget to pull before you branch.

20

Git Centralized Workflow

If you are working with a small team (or by yourself), you can use an
even simpler workflow called the Git Centralized Workflow. You
should only use this branching strategy if:

• You don’t need to separate people’s work from each other.

• You don’t need a review process.

• People almost never work on the same files at the same time.

The Git Centralized Workflow does not provide all of the protections
that the GitHub Flow offers, but it is very easy for non-technical people
or people who don’t want to learn about Git. It is not well suited for
larger projects, production source code, or tight collaboration within
teams.

With a graphical Git client and a WYSIWYG Markdown editor, the
centralized workflow can be an effective way for content creators,
managers, and engineers to collaborate on non-production content
such as specifications, planning documents, newsletters, internal
documentation, and the like.

In this workflow, everyone works on the main branch. Before working,
pull. While working, stage and commit. When you’ve completed a task,
push. You don’t need to create a pull request, and there is no working
branch to merge. You just push your changes to the main branch and
resolve any conflicts.

Branching Problems

An overly complex branching strategy can cause problems. In this
example, convoluted branching leads to shipping something that
shouldn’t have gone out.

21

The diagram above shows a branch (working branch 2) created from
another branch (working branch 1). By itself, this is not a problem. As
long as working branch 2 is merged back into working branch 1, all is
well. But if you merge working branch 2 directly to the main branch, it
will cause the commit it was based on—part of working branch 1—to
become part of the main branch. If the main branch is then released,
unapproved changes from working branch 1 can be included in that
release.

22

23

How It All Fits Together

As you work with Git, you can choose whatever editor, branching
strategy, and Git client make sense to you. You edit files, saving from
the editor, then use your Git client or the command line to stage,
commit, pull and push.

Here are a few examples that show what it might be like for several
people to work together on some files using Git and other tools. For
these examples, the repo is set up and has files in it. The people are
continuing work on a project already in progress, using the GitHub
Flow.

Graphical Git

One person has chosen to create some new work on the project using a
graphical desktop client:

1. In the desktop Git client, pull and create a branch.

2. Work on files in the project.

3. Stage and commit, typing a short commit message.

4. Push the new branch and its changes to the remote repo.

5. Create a pull request online.

24

Git on the Command Line

A collaborator wants to work on the same files. That means pulling and
checking out the same branch where the files are, editing the files, and
pushing up to the remote repo. This particular collaborator prefers Git
on the command line:

1. Use git pull to get the latest changes, including the branch the
content author pushed.

2. Type git checkout and the branch name to switch to the new
branch.

3. Work on files in the project.

4. Type git commit and write a commit message.

5. Pull again to make sure that there are no merge conflicts.

6. Push from the local working branch to the remote.

7. In the output of the git push command, find the URL to create a
pull request online.

Git Online

A contributor wants to make small changes to a file without the
overhead of pushing from their local machine:

1. Go to the repository on the Git host.

2. Navigate into the directory containing the file.

3. Click the filename.

4. Click the Edit button (it sometimes looks like a little pencil).

5. Commit the changes. If you don’t need the changes reviewed,
commit directly to the main branch. Otherwise, create a pull
request.

25

Reviewing a Pull Request

A reviewer needs to approve the work. You do this online, in the web
interface provided by the Git host:

1. Go the pull request.

2. Comment on any lines you’d like the author to change.

3. Once the work is acceptable, approve the pull request.

4. When enough reviewers have approved the work, the author can
merge the pull request.

26

27

Get Started

GET STARTED

28

29

Get Set Up with Git

Follow these steps to sign up with a Git host, install Git tools, and set
up your first repository.

Get Git

Get a Git account on a host, then install a Git client.

1. Sign up with a Git host such as Bitbucket or GitHub. Look for
instructions on the host’s website:

– https://bitbucket.org/

– https://github.com/

2. Install a Git client such as Sourcetree or GitHub Desktop. Look for
instructions on the client’s website:

– https://www.sourcetreeapp.com/

– https://desktop.github.com/

Installing a Git client installs Git too. On the command line, you can
check whether Git is installed on your computer by typing:

git --version

If Git wasn’t installed for some reason, install Git on your computer
using the instructions at https://git-scm.com/.

TIP You can use any Git client with any Git host, but some
hosts and clients go together. For example:

• Bitbucket and Sourcetree
• GitHub and GitHub Desktop

Set up a Repository

A repository is where you keep your work. You’ll need a local
repository where you commit changes on your computer, and a remote

https://git-scm.com/

30

repository online where you collaborate with others. A straightforward
way to create both is to set up a repository with an online host and
then clone it (create a local copy). Your collaborators clone the
repository to their own computers, so everyone can keep in sync by
pushing and pulling changes.

Set up a Repository with Bitbucket and Sourcetree

1. Log on to Bitbucket.

2. Click the Create button (the + in the left sidebar):

3. Under Create, select Repository.

4. Type a repository name, set it as a public repository, and click
Create repository.

5. Click Clone in Sourcetree.

6. Choose a folder on your computer for the local copy of the
repository, and click Clone.

31

Set up a Repository with GitHub and GitHub Desktop

1. Log on to GitHub.

2. Click the plus sign and select New repository:

3. Type a repository name, set it as a public repository, and click
Create repository.

4. Click Set up in Desktop to open the repository in GitHub
Desktop:

5. Choose a folder on your computer for the local copy of the
repository and click Clone.

Result

It might not look like much has happened, but you now have:

• Git running on your computer

• A repository at an online Git host

• A local copy of the repository on your computer

32

33

Tutorials

These short tutorials show you how to get started working with Git. If
you want more information about any of the steps, see “Basic Git
Operations” on page 79.

TIP Before working on these tutorials, make sure you’ve
completed all the steps in “Get Set Up with Git” on
page 29.

Tutorial: Day to Day Work in a Git Client

This tutorial shows how to create a working branch, make changes to a
few files, and commit. If you’re following the GitHub Flow, this is how
you begin working on a new task.

TIP These steps are designed to work with either GitHub
Desktop or Sourcetree, but you can use any Git client
you choose. The names of the commands are similar
but vary slightly in different Git clients.

Create a Working Branch

The first step is to create a working branch based on the main branch.

1. In your Git client, look at the tab at the top of the screen to see the
name of the repository you created in the previous chapter.

2. Look under Current branch or Branches to make sure you’re on
the main branch.

3. Select Repository > Pull to get the latest changes from the
remote repository.

34

4. Make a new branch.

 GitHub Desktop:

– Click Current branch, then New branch.

 Sourcetree:

– Click Branch.

5. Type a descriptive name and click Create Branch.

– If you’re using GitHub Desktop, click Publish Branch.

Commit Some Changes

Once you have a working branch, you can open your favorite editor
and work on any files in the project.

TIP Before continuing, create a file and save it. For
example, you could create a file called hello.txt
with the contents "Hello, world!"

If you want to see how multiple files look in a pull request, create more
than one file.

Stage and commit:

1. Look in your Git client to see the list of changed files.

2. Click a filename to see a diff, which shows the added and removed
lines in that file.

3. If you’re satisfied with all the changes, you’re ready to commit.

4. Type a summary for the commit, then click Commit.

– If you’re using Sourcetree, click Stage All first.

35

Push and Create a Pull Request

When you’re ready to share your work with others, push your branch
and create a pull request.

1. Pull from the main branch.

 GitHub Desktop:

– Click Fetch origin.

– If the button changes to Pull origin, click once more.

 Sourcetree:

– Click Pull.

2. Push your branch.

 GitHub Desktop:

– Click Push Origin.

 Sourcetree:

– Click the Push button.

– Make sure the local and remote branches are as expected,
then click Push.

3. Create the pull request.

 GitHub Desktop:

– After you push, the banner with the Push button changes
to read "Create a pull request from your current branch."
Click Create Pull Request.

36

Sourcetree:

– Click Repository > Create pull request.

– In the dialog that appears, click Create Pull Request on
Web.

4. The browser opens a page with a form for creating a pull request.
Type a description.

5. Add reviewers to the pull request. Since no one else has access to
the repository yet, you’ll just type your own username.

– If you’re using GitHub Desktop, you need to click the gear
next to Reviewers to add reviewers.

6. Click Create pull request.

Take some time to explore the pull request. It shows the description
you typed, all the changes you made in each file, and the reviewers.

As people review the pull request, they can leave comments. When
they are satisfied with your changes, they can approve the pull
request.

Review a Pull Request

When someone submits a pull request for review, they’re giving
teammates the opportunity to see and comment on every change. Put
on your reviewer hat and look at your pull request again.

1. Scroll down to see the lines that have changed in the files.

2. Move the mouse cursor over one of the lines in the file. Click the
colored plus sign button that appears.

37

3. Type a comment and click Save.

You can continue adding comments in this way.

Approve a Pull Request

When the person who submitted the pull request (probably you, at the
moment) has made the appropriate improvements, you can approve
the pull request:

• Click Approve.

Merge a Pull Request

When enough reviewers have approved your pull request, you can
merge:

• Click Merge.

Your team determines how many approvals are enough. If you are
working by yourself, of course, you can approve your own pull request
and then merge it—or just use the Centralized Git Workflow, which
doesn’t require pull requests.

If you have kept up with pulling the changes into your local branch and
solving merge conflicts there, it will go smoothly. If not, you might
need to pull, resolve, commit, and push once more before merging.

38

Tutorial: Working on the Command Line

Here are a few things to try on the command line.

Switch to a Working Branch

1. Make sure you’re on the main branch:

git checkout main

2. Pull, to make sure you have the latest changes:

git pull

3. Switch to a working branch.

– If you have completed “Tutorial: Day to Day Work in a Git
Client” on page 33 and want to use your existing branch,
switch to it by typing git checkout {branch-name}.
Example:

git checkout my-working-branch

– Otherwise, create a new branch and switch to it with git
checkout -b {new-branch-name}. Example:

git checkout -b new-branch

4. Type git status to make sure you’re on the expected branch.

39

Commit Some Changes

Once you have a branch to work in, you can open your favorite editor
and work on any files in the project.

TIP Before continuing, create a file and save it. If you’ve
done “Tutorial: Day to Day Work in a Git Client” on
page 33, just open one of your files and make changes.

Stage and commit:

1. Type git status to see your staged and unstaged changes.

2. Use git diff to see the lines that have changed:

– git diff by itself shows the changes in all the files in the
project.

– git diff {filename} shows the changes in the
specified file. You can use directories and wildcards to
specify groups of files.

3. Type git add . to stage all the changes.

4. Type git commit -m along with a commit description. Example:

git commit -m "Make changes to my-file.txt"

Push and Create a Pull Request

When you’re ready to share your work with others, push your branch
and create a pull request.

1. Make sure you’re on the correct branch and you have no
uncommitted changes:

git status

2. Pull, to make sure you have the latest changes:

git pull

40

3. Type the git push command, specifying the remote (usually
origin) and the branch. Example:

$ git push origin my-working-branch

Enumerating objects: 14, done.
Counting objects: 100% (14/14), done.
Delta compression using up to 4 threads
Compressing objects: 100% (10/10), done.
Writing objects: 100% (10/10), 4.39 KiB | 1.10
MiB/s, done.
Total 10 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed
with 1 local object. remote:
remote: Create a pull request for 'my-working-
branch' on GitHub by visiting: remote:
https://github.com/pconrad-fb/markdown/pull/new/my-
working-branch
remote:
To https://github.com/pconrad-fb/markdown.git
* [new branch] my-working-branch -> my-working-
branch

4. Take note of the URL in the next line after the Create a pull
request line in the output. Copy and paste this URL into a
browser.

5. Follow the instructions on the screen.

Once you’ve created a pull request, the steps for reviewing, approving,
and merging are the same as the corresponding sections above.

41

Stay out of Trouble

There are several common ways to get into trouble with Git. Here are a
few tips to help keep you working smoothly.

Choose the Correct Branch

When you’re working on a project, it isn’t always easy to tell which
branch you’re on just by looking at the files. To avoid making changes
on the wrong branch, double-check before you start working. If you
end up doing some work (or committing) on the wrong branch, there
are ways to fix the problem, but it’s better to avoid that mistake in the
first place.

Pull Often

Before you start working, pull from the main branch (or whatever
branch you plan to merge onto later). This helps keep your files in sync
with the changes that others are pushing. If someone else’s work
conflicts with yours, you’ll know more quickly, which can make the
merge conflicts easier to solve.

Think before Committing, Pushing, or Branching

Before committing, make sure you’re on the correct branch and
looking at the right changes. Before pushing, make sure you’re sharing
the changes you mean to and that you’re pointed at the correct branch
on the appropriate remote repository. Before branching, make sure
you’re starting from the right branch—usually main or master, if
you’re using the GitHub Flow.

Use a Simple Branching Strategy

The more complicated the branching strategy, the more difficult it is to
remember what goes where. Starting from the GitHub Flow is a good
idea, unless your team already uses something else. If you always
branch from main and merge to main, it’s easy to know where your
changes will end up.

42

Be Watchful

A Git client such as GitHub Desktop or Sourcetree keeps relevant
information in front of you all the time. On the command line, you can
use git status to see what branch you’re on and any staged or
unstaged changes. Keep an eye on this information as you work. It’ll
help you stay out of trouble, and make it easier to fix problems when
they occur.

43

Write Good Commit Messages

Commits are the heart of Git, and your commit messages are the soul
of documenting changes. Many people have written great advice about
how to craft a good Git commit message.

If your changes are simple and obvious, you can get by with one line.

If you want to provide more information, write a proper commit
message with a subject (the first line) and body (the other lines).

• In GitHub Desktop, the Summary (required) is the subject and the
Description (optional) is the body.

• In Sourcetree or on the command line, the subject is the first line
and the body is all the subsequent lines.

On the command line, using git commit without the -m option opens
a text editor so you can type a proper commit message.

The subject line summarizes the change. Use an imperative sentence,
50 characters or less, with no punctuation at the end. The subject
finishes the sentence This commit will…

After the subject, leave a blank line before the body (in GitHub
Desktop, the separation of Summary and Description fields does this
for you).

The body gives more context about the change. In the body, explain
why the change is necessary, how it solves the problem, and what side
effects it might have. Manually wrap body lines at 72 characters. You
can use Markdown in the body for bullet points and other light
formatting.

If you are tracking issues related to the commit, list the issue numbers
at the bottom of the body.

44

Example

Add a short chapter about commit messages

Good commit message style was a missing feature from
this manuscript. In the interest of providing complete
information, I've added a guide to writing good commit
messages. Most of this information came from the web,
where almost all the guidelines seem to agree from one
site to another.

This section might make readers think they aren't
allowed to use a one-line commit message for a simple
change, but that's less risky than not telling how to
provide complete, proper documentation of changes.

This commit resolves issue #ED-678: No guidance on
commit messages.

45

Fun with Git

FUN WITH GIT

46

47

Command Line Tips and Tricks

If you prefer to work on the command line, these techniques can be
helpful.

Authenticate Git on the Command Line

Git clients store browser-based credentials so they can authenticate
you automatically. Git authentication on the command line is different.

The first time you use Git on the command line, it might ask you to
complete authentication in your browser. If that happens, a browser
window opens and Git helps you create a token to authenticate you
every time you issue a command to the remote repository:

$ git push

info: please complete authentication in your browser...

Git might ask you for a username and password instead:

$ git push

Username for 'https://github.com':

If that happens, you’ll need your Git host username and either a login
password or a token, which works the same as a password. A token is a
long string of random characters that is safer and more difficult to
crack than most passwords.

Your Git host has instructions for creating an access token, if needed.

NOTE When you create the token on the Git host, copy it to
the clipboard and paste it somewhere safe
immediately. Once you dismiss the screen that shows
your new token, there is no way to display it again.

48

Cache Your Credentials

If you don’t want to type your username and token (or password)
every time you run a Git command, you can cache your credentials by
telling Git which credential helper to use.

The first time after you configure a credential helper, you’ll need to
supply your credentials once more. After that, you’re authenticated
automatically.

Linux

On Linux, there are three ways to cache or store your credentials.

The Credential Memory Cache

The cache credential helper keeps your credentials in memory. You
configure it by typing:

git config --global credential.helper cache

For safety, your credentials are kept for only 15 minutes (900 seconds)
by default. You can specify a different timeout with the --timeout
parameter.

Example

Set the timeout to one hour (3600 seconds)

git config --global credential.helper 'cache --
timeout=3600'

The Store Credential Helper

You can use the store credential helper to store your credentials in
plain text in the ~/.git-credentials file.

WARNING This is a security risk. If anyone gains access to your
computer, they can find and use your credentials to
access your remote repo.

49

If you’re sure you want to store your credentials in plain text,
configure the store credential helper by typing:

git config --global credential.helper store

The Libsecret Credential Helper

The libsecret credential helper is more convenient than cache but
takes a few steps to set up:

1. Install the libsecret source package. Example:

 sudo apt-get install libsecret-1-0 libsecret-1-dev

2. Change to the directory where the source is installed:

 cd /usr/share/doc/git/contrib/
credential/libsecret

3. Build the code:

 sudo make

4. Configure libsecret as the credential helper:

 git config --global credential.helper
/usr/share/doc/git/contrib/credential/
libsecret/git-credential-libsecret

macOS

• On macOS, use osxkeychain to store your credentials in the OS X
keychain:

 git config --global credential.helper osxkeychain

Windows

• On Windows, use wincred to store your credentials in the
Windows Credential Manager:

 git config --global credential.helper wincred

50

51

Examine the Past

There are two main ways to see a history of commits:

• The git log command shows the current HEAD and the commit
history leading up to it.

• The git reflog command shows all commits HEAD has ever
pointed to, without regard to branches.

If you want to see what you’ve done recently in the current branch, use
git log. If you want to see everything that’s ever happened in your
local repo, use git reflog.

NOTE Both commands show the hash, a number that
uniquely identifies each commit.

Git Log

Git log provides a number of different ways to look at the history of the
current branch. The simplest form of the command gives somewhat
verbose output:

 $ git log

commit 971ccbd2536265c9683659c69b502e9dcbd8791e
(HEAD -> master, origin/master, origin/HEAD)
Author: Peter Conrad <stymied@gmail.com>
Date: Tue May 18 20:30:55 2021 -0700

 Fix problems with the structure

commit d22db10aca037d1d8ce4322ad3e5d20b803f9ce9
Author: Peter Conrad <stymied@gmail.com>
Date: Tue May 18 18:23:24 2021 -0700

 Add content from the slide deck

commit 423e781d81d51f69c36599cfc3fe818c1c40444d
Author: Peter Conrad <stymied@gmail.com>

52

Date: Fri Apr 9 18:14:36 2021 -0700

 Edit Concepts chapter

commit 363df41ce2c6de19bd2b654b87a62cc011dd7dd4
Author: Peter Conrad <stymied@gmail.com>
Date: Sun Dec 27 19:48:12 2020 -0800

 Rewrite Basics chapter

commit 39d2dfd6410b9e66ff2e1e8a87cf0115f4d0316b
Author: Peter Conrad <stymied@gmail.com>
Date: Mon Dec 21 17:59:48 2020 -0800

 Finalize troubleshooting section

To see a more compact version of the log, use --oneline like so:

 $ git log --oneline

971ccbd (HEAD -> master, origin/master,
origin/HEAD) Messing with a lot of stuff to try to
get the structure right
d22db10 Add content from the slide deck
423e781 Edit Concepts chapter
363df41 Rewrite Basics chapter
39d2dfd Finalize troubleshooting section
ce2500c Revert "This commit is a mistake!"
d9fa1d2 This commit is a mistake!
d555f66 Commit some lovely changes
0856f2c Create initial structure for examples
1b122ee Fix up Git Concepts section
d62b067 Improve Troubleshooting section
99f68ba Fix errors in glossary
0086a00 Draft overview
75d01c9 Fix build errors
1c4d847 Make headings consistent
5db7b41 Fix screenshots
6c1c5bf Create overall structure
4667731 Write outline

53

NOTE If you prefer to see the full commit hash instead of just
the first seven digits, you can use --pretty=oneline
instead of --oneline.

View the Branch Structure

Along with the commits, Git can show you a diagram of branches and
merges using the --graph and --decorate options:

 $ git log --oneline --graph --decorate

* b786678 (HEAD -> working-on-some-stuff,
origin/working-on-some-stuff) Merge branch
'working-on-some-stuff' of
https://bitbucket.org/vidriocafe/bitbucket-test-
repo into working-on-some-stuff
|\
| * 69d234a Edit my-first-file.md
* | c911007 Edit Introduction
|/
* 062e771 Update my-first-file.md
* fcb9dda Merged in a-new-branch (pull request
#1)
|\
| * f57b781 Add my first file to the repo
|/
* cbdaa65 Initial commit

Compare Branches

To see commits that exist in one branch but not another, type the
branch names separated by two dots. The syntax is:

 git log {branch1}..{branch2}

This shows the changes that exist in branch2 but not branch1.

You can use options like --oneline or --pretty=oneline to format
the output.

54

Example

Show the commits that are in the working-on-some-stuff branch
but not in main:

$ git log main..working-on-some-stuff --pretty=oneline

b7866782188fd66da1ccb784da721972349fdb54 (HEAD ->

working-on-some-stuff, origin/working-on-some-stuff)

Merge branch 'working-on-some-stuff' of

https://bitbucket.org/vidriocafe/bitbucket-test-repo
into working-on-some-stuff

c9110074618e7dab1c412a8f73d25487a4b0b0ae Edit Intro

69d234a992e860ddb9f0eaa246b4cc213fcc18a2 Edit my-first-

file.md

Show the Last Several Commits

You can use the two-dot syntax to show the last few commits. For
example, git log HEAD~3..HEAD shows the last three commits on
the current branch.

Another way to do the same thing is: git log -n 3.

Example

Show the last three commits:

$ git log -n 3 --pretty=oneline

b7866782188fd66da1ccb784da721972349fdb54 (HEAD ->

working-on-some-stuff, origin/working-on-some-stuff)

Merge branch 'working-on-some-stuff' of

https://bitbucket.org/vidriocafe/bitbucket-test-repo

into working-on-some-stuff

c9110074618e7dab1c412a8f73d25487a4b0b0ae Edit

Introduction

69d234a992e860ddb9f0eaa246b4cc213fcc18a2 Edit my-first-
file.md

55

Git Reflog

The git reflog command doesn’t have the formatting options that
git log has. It just shows an ordered list of all the commits that have
happened on your local repository:

$ git reflog

971ccbd (HEAD -> master, origin/master, origin/HEAD)
HEAD@{0}: commit: Messing with a lot of stuff to try to
get the structure right
d22db10 HEAD@{1}: commit: Add content from the slide
deck
423e781 HEAD@{2}: commit: Edit Concepts chapter
363df41 HEAD@{3}: commit: Rewrite Basics chapter
39d2dfd HEAD@{4}: commit: Finalize troubleshooting
section
ce2500c HEAD@{5}: checkout: moving from
d555f66f942ee676a4401223884defe82a95fbb8 to master
d555f66 HEAD@{6}: reset: moving to HEAD~1
d9fa1d2 HEAD@{7}: checkout: moving from master to
d9fa1d2
ce2500c HEAD@{8}: checkout: moving from
d9fa1d294cb83cc751b3780a07dfce11f66fe2fa to master
d9fa1d2 HEAD@{9}: checkout: moving from master to
d9fa1d2
ce2500c HEAD@{10}: revert: Revert "This commit is a
mistake!"
d9fa1d2 HEAD@{11}: commit: This commit is a mistake!
d555f66 HEAD@{12}: commit: Commit some lovely changes
0856f2c HEAD@{13}: commit: Create initial structure for
examples
1b122ee HEAD@{14}: checkout: moving from test-branch to
master
1b122ee HEAD@{15}: checkout: moving from master to
test-branch
1b122ee HEAD@{16}: commit: Fix up Git Concepts

56

Save Some Keystrokes

If you find yourself typing lengthy Git commands often, you can use
aliases to save time. The git config command lets you create a
shortcut for the part of the command after the word git. To use the
shortcut, type git and the alias.

Examples

Create the last3 alias for a one-line listing of the most recent three
commits:

git config --global alias.last3 "log -n 3 --oneline"

Use the last3 alias:

$ git last3

b7866782188fd66da1ccb784da721972349fdb54 (HEAD ->

working-on-some-stuff, origin/working-on-some-stuff)

Merge branch 'working-on-some-stuff' of

https://bitbucket.org/vidriocafe/bitbucket-test-repo

into working-on-some-stuff

c9110074618e7dab1c412a8f73d25487a4b0b0ae Edit

Introduction

69d234a992e860ddb9f0eaa246b4cc213fcc18a2 Edit my-first-

file.md

57

Compare Branches or Commits

As you probably recall, git diff shows all the uncommitted changes
since the last commit. To see the currently staged changes, you can use
git diff --cached instead.

You can use two dot syntax to compare two commits or two branches.
The syntax is:

git diff {since}..{until}

By specifying a file or directory name, you can limit git diff to show
changes on a particular file or directory.

Examples

Show the difference between three commits ago and one commit ago:

git diff HEAD~3..HEAD~1

Use hashes to compare two commits directly:

$ git diff be753da..69d234a

diff --git a/my-first-file.md b/my-first-file.md
index 0de9f54..007371f 100644
--- a/my-first-file.md
+++ b/my-first-file.md
@@ -1,9 +1,9 @@
 # My First File

-This is the first file I am adding to my new
repository.
+This is the first file I added to my new repository.

 - It is Markdown
 - It is simple
-- It is new
-
-Later I will make changes to this file.
+- It is not so new anymore.
+

58

+This is when I make changes to this file. Later has
come and gone!

Show the changes in my-first-file.md between the master and
working-on-some-stuff branches:

$ git diff master..working-on-some-stuff my-first-
file.md

diff --git a/my-first-file.md b/my-first-file.md
index b708c3a..007371f 100644
--- a/my-first-file.md
+++ b/my-first-file.md
@@ -4,6 +4,6 @@ This is the first file I added to my
new repository.

 - It is Markdown
 - It is simple
-- It has been around the block!
-
+- It is not so new anymore.
+
 This is when I make changes to this file. Later has
come and gone!

59

Checkout Old Commits

The git checkout command lets you go back to any commit by its
hash. The syntax is:

git checkout {hash}

You can use either the long or short version of the commit number
displayed by git log. Consider the following output:

$ git log --oneline --graph --decorate

* b786678 (HEAD -> working-on-some-stuff,
origin/working-on-some-stuff) Merge branch 'working-on-
some-stuff' of
https://bitbucket.org/vidriocafe/bitbucket-test-repo
into working-on-some-stuff
|\
| * 69d234a Edit my-first-file.md
* | c911007 Edit Introduction
|/
* 062e771 Update my-first-file.md

If you wanted to go back in time to the state of your files when you
edited my-first-file.md, you can checkout that commit with git
checkout 69d234a.

NOTE If you checkout an old commit and want to create
changes, you must create a branch first.

When you check out an old commit, your HEAD (the "you are here"
pointer) no longer points to the tip of a branch. This is called a
detached HEAD. If you make a commit without starting a new branch,
the only way to get back to that commit later is to know its hash.

WARNING Don’t commit with a detached HEAD.

60

Label Commits with Tags

Commit hashes are a reliable way to identify commits, but they are not
easy to read. To label a commit so that you easily can find it later, you
can add a commit tag. There are two kinds of tags, with different
syntax:

• Lightweight tag:
git tag {label}

• Annotated tag:
git tag -a {label} -m "{description}"

A lightweight tag is just a label that points to a commit. An annotated
tag is a Git database object that points to a commit, including a
message and other information. Some people use annotated tags for
commits they intend to push from, and lightweight tags for other
commits.

You can use a tag name in any command that takes a commit hash.

Examples

Add an annotated tag to the most recent commit before pushing:

git tag -a release-1.0 -m "First release of the
product"

Add a lightweight tag to a local commit for your own future reference:

git tag final-review

Show the changes between the commits tagged final-review and
release-1.0:

git diff final-review..release-1.0

Share Tags

To share tags, you must push them explicitly.

Examples

Push a single tag:

61

git push origin my-tag

Push all tags:

git push origin --tags

Push annotated tags relevant to the commits being pushed:

git push origin --follow-tags

62

Clean Up

Keeping your repository clean helps avoid confusion. Here are three
things you can do to keep things in order.

Ignore Irrelevant Files

If your working directory contains test output, compiled files, or other
files you don’t want included in source control, you can tell Git to
ignore them. This keeps Git from tracking the files, preventing them
from being included in commits or pushes.

The top level of your local repository working directory contains a file
named .gitignore that shows which file types or filename patterns
to ignore.

Here’s a sample excerpt from .gitignore showing wildcards:

Applications
*.app
*.exe
*.war

Large media files
*.mp4
*.tiff

You can exclude a specific file or directory by name, or use wildcards
(*) to exclude files and directories with similar names. The wildcards
match any text. That is, *.exe means "any file that ends with .exe."

Delete Old Branches

After you’re finished with a branch, you can use git branch -d to
delete it. Deleting a branch doesn’t delete the files or the changes
you’ve made to them. It just means that branch is closed and you can’t
work on it anymore. Deleting a branch locally doesn’t delete the
remote (pushed) copy of the branch, but can flag the commit history of
the local branch for deletion.

This command fails if the specified branch hasn’t been merged to the
current branch yet, including on the remote repo. If you are absolutely

63

sure you want to delete a branch without merging it—to abandon it, in
effect—you can use a capital -D instead to force deletion.

Example

Delete the local branch working-on-some-stuff:

git branch -d working-on-some-stuff

Rebase

Rebasing means moving an entire branch by changing the commit that
it’s based on. It’s a controversial practice. Some people feel that
rebasing rewrites the true commit history, while others feel it cleans
up history and makes it easier to read. Both opinions are true.
Rebasing can be useful if you’ve made one or more commits in the
wrong place and need to move them.

Rebasing can also be dangerous. If other people have based their work
on some of your commits, rebasing those commits can make life
painful for them.

WARNING Do not rebase commits outside your repository or
commits that others might rely on.

If you are sure you want to rebase, here’s how to do it.

1. Check out the branch you want to move:

 git checkout the-working-branch

2. Use rebase to move it to the tip of another branch:

 git rebase main

3. Use git log to verify that you did what you expected:

 git log --oneline

You can also use an interactive rebase to choose which commits and
changes to move. The command git rebase -i {branch} shows all
the commits in the branch in a text editor, letting you move lines

64

around and change what happens to them. That level of surgery is too
much for a book called Git Doesn’t Have to Be Hard. You can find more
information at https://git-scm.com/book/ if you’re curious.

NOTE If you lose track of a commit by rebasing carelessly,
you can use git reflog to find the hash, then check
it out. See “Checkout Old Commits” on page 59.

65

Move, Rename, or Delete Files

If you move, rename, or delete a file, Git needs to know whether to
track that change. One way to do that is to move the file with the
Finder or the File Explorer, then stage the change yourself. But there’s
an easier way. Git includes its own mv and rm commands to make it
easier to manage files.

Git Move

You use git mv to move or rename files, groups of files, or directories.
The syntax is:

git mv {from} {to}

Examples

Rename bad-filename.txt to good-filename.txt:

git mv bad-filename.txt good filename.txt

Move good-filename.txt into the directory some-files:

git mv good-filename.txt some-files

Git Remove

The git rm command removes files in one of two ways:

• git rm removes the file from Git tracking and deletes it.

• git rm --cached removes the file from Git tracking but doesn’t
delete it.

Either way, you can only use git rm on files that are unstaged, with
no differences between the versions in your working directory and the
tip of the current branch.

To remove a directory and all its contents, add the -r option.

NOTE Git tracks changes, not directories, so the git rm -r
command won’t work on an empty directory.

66

To safely see what git rm will delete before running the command for
real, add the --dry-run option. This shows output of the files that Git
would delete, but doesn’t actually delete them.

Example

Un-track (but don’t delete) everything in the some-files directory:

git rm -r --cached some-files

67

Pack Up

You can create an archive of your repository to share a copy with a
reviewer who doesn’t use Git. The simple syntax is:

git archive {branch or HEAD} --format={format} --
output={path}

This creates an archive of all the files as they exist in the current HEAD,
without any of the version control information.

You can also create a bundle, which includes the version control
information, enabling the recipient to treat the bundle as if it were a
remote repo. This is handy for air gapped environments or very large
repositories that would be impractical to clone over a network. The
simple syntax is:

git bundle create {path} --all

You can send the bundle file to a recipient, who can then clone it to
create a local copy of your repo.

Examples

Create an archive of all the files in the working directory:

git archive HEAD --format zip --output archive-HEAD.zip

Create a bundle of the entire repository, including remote references:

$ git bundle create ../copy-of-test-repo.bundle --all

Enumerating objects: 45, done.
Counting objects: 100% (45/45), done.
Compressing objects: 100% (44/44), done.
Total 45 (delta 17), reused 0 (delta 0), pack-reused 0

Clone a repo from a bundle:

$ git clone copy-of-test-repo.bundle copy-of-repo -b
master

Cloning into 'copy-of-repo'...

68

Receiving objects: 100% (45/45), 5.10 KiB | 1.70 MiB/s,
done.
Resolving deltas: 100% (17/17), done.

69

Create a Git Wiki

A Git repository comes with a wiki, where people can read and
collaboratively edit documentation. You can create a wiki to document
projects or code stored in the repository, or you can just use a
repository for its wiki capability. Most of the time, you use Markdown
to write content in a Git Wiki, but some hosts also support
reStructuredText, AsciiDoc, or other lightweight markup.

NOTE A Git wiki is a second repository attached to your
repository. You clone, pull, and push to the main
repository and the wiki separately.

Git Wiki Structure

A Git wiki uses folders to organize files. The path to a file determines
the URL where the content is displayed.

A simple directory structure might look like this:

Home.md
stuff/
 something.md

In that case, the URL to the content in something.md is:
/wiki/stuff/something.

You set up your content URLs by placing the files in a corresponding
directory structure in your wiki.

70

Set Up a Wiki

The easiest way to set up the wiki is by logging onto your Git host and
adding it there.

Set Up a Wiki in Bitbucket and Sourcetree

1. In Bitbucket, in the Repository settings, find Features.

2. Click Wiki.

3. Select Public wiki and click Save.

Set Up a Wiki in GitHub and GitHub Desktop

The GitHub documentation on wikis is helpful:
https://docs.gitlab.com/ee/user/project/wiki/

 Here are the basic steps:

1. In GitHub, click the Settings button:

2. Scroll down to Features and select Wikis.

71

Work with Content on the Host

If you just want to add a few pages to the wiki online, there’s no more
setup to do. Just go to your repository, click Wiki, and you’ll see
buttons for creating and editing pages.

To add a page in a new folder, make the folder part of the new
filename. For example, creating a file called morestuff/newpage.md
adds newpage.md in a folder called morestuff.

Work with Content Locally

There are advantages to working with wiki files locally, on your
computer:

• It’s much easier to add folders and move files around.

• You can work on it even when you’re offline.

• You can use your editor of choice.

• Others can collaborate with you more safely.

Clone a Wiki in Bitbucket and Sourcetree

1. On Bitbucket, Click Wiki.

2. Click Clone wiki then Clone in Sourcetree.

3. Make sure the local path shows the directory where you want to
clone the repository, and click Clone.

72

Clone a Wiki in GitHub and GitHub Desktop

1. On GitHub, click the Wiki button:

2. Copy the Clone this wiki locally URL.

3. In GitHub Desktop, click File > Clone repository.

4. Paste the URL, make sure the local path shows the directory
where you want to clone the repository, and click Clone.

Clone a Wiki on the Command Line

1. Go to your online repository and click Wiki.

2. Copy the URL (or command and URL) for cloning the wiki
repository.

3. On the command line, navigate to the directory where you want
to clone the repository.

4. Use git clone and the URL to clone the repository. Example:

 git clone https://my_name@bitbucket.org/
my_name/markdown-stuff.git/wiki

73

Tutorial: Create Structured Wiki Content

Here’s a quick tutorial that shows how to organize pages in the wiki.

Create Some Content Locally

1. Add a folder called stuff.

2. Using your favorite Markdown editor, make a file called
something.md inside stuff, with the following contents:

Something

Yes, there's *something* here! Now go
[home](../Home).

3. Check that you now have a content structure that looks like this:

Home.md
stuff/
 something.md

4. Commit and push.

Take a Look

After you commit and push the changes, take a look at your online wiki
on the host:

1. Go to your online repository and click Wiki.

2. View the page tree of the wiki. For example:

– In Bitbucket, click the name of the wiki.

– In GitHub, click Pages.

74

3. Navigate to the page you created.

4. Try the home link.

75

Publish a Website

You can publish a static website directly on Bitbucket or GitHub. In
either case, the website is a repository with a special name.

The structure of a static website is similar to Git Wiki structure. The
directory path to each file determines its URL. There are two ways a
static website’s content is different from a wiki:

• The files are HTML, not Markdown.

• Each subdirectory should contain an index.html file.

You can add images and other embedded content to your website by
uploading it to the repository and referring to it in HTML pages.

You can use JavaScript on your pages, but you can’t do any server-side
scripting such as PHP.

Publish a Website on Bitbucket

Bitbucket lets you create workspaces to organize your repositories.
Each workspace can have its own website. After you create a
workspace, you create a repository with the workspace name plus
bitbucket.io to host the website.

1. On Bitbucket, click the Create button (the + in the left sidebar),
then select Workspace.

2. Type a name and ID for the workspace, then click Create.

3. Click the + in the left sidebar again, then select Repository.

4. Enter {workspace name}.bitbucket.io for the Repository
Name. For example, if the workspace is called my-workspace,
name the repository my-workspace.bitbucket.io.

5. Enter a Project name.

6. Click Create repository.

76

7. Add an index.html file containing HTML. You can either edit
and commit in Bitbucket directly, or edit, commit, and push from
your local machine.

8. Browse to {workspace name}.bitbucket.io to see your first
page.

Publish a Website on GitHub Pages

GitHub lets you create a single public website for your account, named
with your username.

1. On GitHub, create a new public repository named
{username}.github.io. For example, if your username is
pconrad, name the repository pconrad.github.io.

2. Clone the repository to your local machine.

3. Working on your local machine, create an index.html file
containing HTML.

4. Commit and push.

5. Browse to {username}.github.io to see your first page.

It can take some time for the website or any changes to appear.

77

Reference

REFERENCE

78

79

Basic Git Operations

The following sections describe how to perform the most common Git
actions:

• Pull the latest changes from the remote repo.

• Create a branch.

• Stage and commit periodically as you work.

• Push your commits to the remote repo, sometimes creating a pull
request.

• Approve and merge.

Each section shows steps for three environments:

• GitHub Desktop

• Sourcetree

• Git command line interface

Working with Git tools embedded in other applications is similar. Once
you learn each procedure in your tool of choice, you’ll be able to figure
out how to do it elsewhere.

80

81

Pull

The Git pull command fetches content from the remote repository and
automatically merges the changes with your local repository so that
the current branch your local repository matches the latest version of
the same branch on the remote (usually origin, where your copy of
the project originated when you cloned it).

Pull in Sourcetree

1. Make sure you’re on the right branch in the correct repository:

– The bold text under Branches tells you the branch.

– The tab at the top of the screen tells you the repository.

2. Select Repository > Pull or click the Pull button.

Pull in GitHub Desktop

1. Make sure you’re on the right branch in the correct repository:

– The bold text under Current branch tells you the branch.

– The bold text under Current repository tells you the
repository.

2. Select Repository > Pull or perform the following steps:

a. Click the Fetch origin button.

b. Click the Pull origin button.

Pull on the Command Line

1. Make sure you’re on the right branch:

82

$ git branch
* main

2. If necessary, switch branches with git checkout and the branch
name. Example:

git checkout main

3. Check that your remote origin is set properly:

$ git remote -v

origin https://github.com/pconrad-fb/markdown.git
(fetch)
origin https://github.com/pconrad-fb/markdown.git
(push)

4. If necessary, set the origin with git remote add origin and
the URL. Example:

git remote add origin https://github.com/pconrad-
fb/markdown.git

5. Type the git pull command.

83

Stage and Commit

Git knows when you make changes to your files. When you want to
save those changes to Git, you must do two things:

• Stage them, which tells Git which changes you intend to keep.

• Commit them, which saves the changes.

First, you tell Git which changes to track. This is called staging. Since
changes go with files, sometimes people think of it as staging the files
themselves—but it’s really the changes that Git wants to know about.
Remember, if you delete a file, that’s a change too.

Creating and saving a group of tracked changes in Git, or committing
the changes, is a little like “saving changes to Git.” Git shows you the
changes you’ve made so you can make sure you’re not accidentally
tracking something irrelevant. When you commit, you type a little note
describing the changes so that any collaborators (or you, in the future)
know what you did.

Stage and Commit in Sourcetree

In Sourcetree, you stage and commit your files in two operations.

1. Make sure you’re on the right branch in the correct repository.

2. Look for the files you changed in the Unstaged files pane. Select
the files you want to stage—in most cases, you can just click
Stage All.

3. Make sure the correct files have moved to the Staged files pane.

84

4. Type a short commit message and click Commit.

85

Stage and Commit in GitHub Desktop

In GitHub Desktop, you can stage and commit your files in one step.

1. Make sure you’re on the right branch in the correct repository.

2. Look for the files you changed in the Changes tab. Unselect any
files you don’t want to change—most of the time, you can leave all
the checkboxes checked.

3. Type a short commit message.

4. Make sure the Commit button refers to the correct branch
("Commit to my-working-branch," for example).

5. Click Commit to [branch].

Stage and Commit on the Command Line

1. Make sure you’re on the right branch in the correct repository,
and that your remote origin is set properly (see “Pull on the
Command Line” on page 81).

2. Use git status to see what changes are not yet staged.

86

3. Stage any changes you plan to commit. In many cases, you can
stage all the changes at once like this:

git add .

4. Commit the changes, adding a descriptive message:

git commit -m "Type your descriptive message here."

TIP If you are changing files but not adding or deleting any
files, you can often stage and commit all in one line
with commit -am like so:

git commit -am "Commit message"

You can also use filenames and wildcards with git add to stage
changes in specific files or groups of files. For example, git add
directory-name/ adds everything in the directory-name
directory, or git add *.txt adds all the text files in the current
directory.

TIP To add more information about your changes, omit
the -m option and write a longer commit message. See
“Write Good Commit Messages” on page 43.

87

View Your Changes

You can view your unstaged changes by comparing different versions
of files. The changes are called a diff, because they represent the
difference between the current state of your files and the way they
were in the last commit.

It’s useful to see diffs as you work, to make sure you’re making the
changes you intend to.

View Your Changes in GitHub Desktop or Sourcetree

• Click the filename to see the diff.

88

View Your Changes on the Command Line

• To see all the changes since the last commit: git diff

• To see the changes in a specific file: git diff {filename}

You can use filenames, directory names, and wildcards to specify
groups of files.

89

Push

If you want other people to be able to work on your files, put them in
an online repository such as Bitbucket, GitHub, or GitLab. This is called
a push to a remote repository. A remote repo is sometimes just called a
remote.

Push in Sourcetree

1. Make sure you’re on the right branch in the correct repository.

2. Make sure you’ve committed all the changes you want to push.

3. Select Repository > Push or click the Push button.

Push in GitHub Desktop

1. Make sure you’re on the right branch in the correct repository.

2. Make sure you’ve committed all the changes you want to push.

3. Select Repository > Push or click the Push origin button.

Push on the Command Line

1. Make sure you’re on the right branch in the correct repository,
and your remote origin is set properly (see “Pull on the Command
Line” on page 81).

2. Make sure you’ve committed all the changes you want to push.

3. Type the git push command, specifying the remote (usually
origin) and the branch. Example:

git push origin my-working-branch

90

 If Git already knows what branch you’re on and where your
remote is, you can sometimes just type git push by itself.

91

Create a Branch

Git lets people work in separate work streams called branches so that
they don’t interfere with each other’s work. A branch is just a series of
commits (and a commit is a group of changes). You’re always working
in a branch, even if there’s only one branch. When you have several
branches to work in, Git remembers the state of everything in each
branch so that when you switch between them everything is just how
you expect it.

Creating a new branch is called branching, of course. The Git command
for creating (or switching to) a branch is called, confusingly, checkout.

NOTE You can’t switch branches with uncommitted changes.
You always have to commit (or stash) before you
switch to a new branch.

When you create a branch and push it to the remote repo, it becomes
available to others. You can work on a remote branch someone else
created by fetching (or pulling) and then checking out their branch.

Create a Branch in Sourcetree

1. Pull from main to make sure you have the latest changes.

2. Click the Branch button:

3. Type a descriptive name and click Create Branch.

4. Look under Branches to see that you’re on the new branch.

92

You can switch to a different branch by clicking it in the list of
branches. To gain access to a remote branch, fetch or pull from the
remote repository.

93

Create a Branch in GitHub Desktop

1. Pull from main to make sure you have the latest changes.

2. Click the Current branch tab, then click New branch:

3. Type a descriptive name and click Create branch:

4. Click Publish branch:

5. Look under Branches to see that you’re on the new branch.

You can switch to a different branch by clicking it in the list of
branches. To gain access to a remote branch, fetch or pull from the
remote repository.

94

Create a Branch on the Command Line

1. Pull from main to make sure you have the latest changes:

$ git checkout main

Already on 'main'
Your branch is up to date with 'origin/main'.

$ git pull

Already up to date.

2. Create a new branch and switch to it with git checkout -b.
Example:

$ git checkout -b test-branch

Switched to a new branch
'test-branch'

You can switch to any existing branch by typing git checkout
{branch-name}.

Example

$ git checkout another-branch

Switched to branch 'another-branch'

95

You can check out a remote branch using git fetch or git pull and
then check it out like any other local branch:

$ git fetch

From https://github.com/pconrad-fb/the-lightweight-
markup-book
 * [new branch] test-branch -> origin/test-branch

$ git checkout test-branch

Switched to a new branch 'test-branch'
Branch 'test-branch' set up to track remote branch
'test-branch' from 'origin'.

96

Create a Pull Request

A pull request lets others review your changes before they’re merged
into main or another important branch. A typical workflow looks like
this:

1. Pull from the remote repository.

2. Create a local branch to work in.

3. Commit your changes.

4. Push your branch to the remote repository.

5. Create a pull request.

6. Once your work is approved, merge your branch into main (or, in
some cases, another branch).

Create a Pull Request in Bitbucket and Sourcetree

1. Push to your branch.

2. Click Repository > Create pull request.

3. In the dialog that appears, click Create Pull Request on Web:

4. Type a description, add reviewers, and click Create pull request:

97

Create a Pull Request in GitHub and GitHub Desktop

1. Push to your branch.

2. After you push, the banner with the Push button changes to read
"Create a pull request from your current branch." Click Create
Pull Request:

3. The browser opens a page with a form for creating a pull request:

98

4. Click the gear next to Reviewers to add reviewers:

5. Click Create pull request.

99

Create a Pull Request on the Command Line

1. Push to your branch. Example:

$ git push origin my-working-branch

Enumerating objects: 14, done.
Counting objects: 100% (14/14), done.
Delta compression using up to 4 threads
Compressing objects: 100% (10/10), done.
Writing objects: 100% (10/10), 4.39 KiB | 1.10 MiB/s,
done.
Total 10 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 1
local object. remote:
remote: Create a pull request for 'my-working-branch'
on GitHub by visiting: remote:
https://github.com/pconrad-fb/markdown/pull/new/my-
working-branch
remote:
To https://github.com/pconrad-fb/markdown.git
* [new branch] my-working-branch -> my-working-branch

2. Take note of the URL in the next line after the Create a pull
request line in the output. Copy and paste this URL into a
browser.

3. Follow the instructions on the screen.

100

Approve and Merge

If there’s more than one branch, there always comes a time to merge,
which means to add the changes from one branch into another.
Approving and merging a pull request happens in the web interface
provided by the Git host.

Someone reviewing the pull request can add a comment by clicking the
small plus sign next to a line in a file.

This opens a dialog for writing a comment on that line.

101

When reviewers are satisfied, each one can approve the pull request
by clicking the Approve button. Once enough reviewers have
approved, you can merge.

Git does its best to merge changes automatically. If there are edits to
the same part of the same file on two or more branches, Git will ask
you which edits take priority. This is called a merge conflict, and is
usually not as bad as it sounds. See “Merge Conflict” on page 105 to
learn how to fix merge conflicts.

Merge a Pull Request in Bitbucket

• Click Merge:

Merge a Pull Request in GitHub

• Click Merge:

102

103

Trouble

From time to time, even the most seasoned Git users make a mistake.
Here are some of the most common mistakes and how to fix them.

Edited in the Wrong Branch

You’ve edited a file in the wrong branch. What you’d like to be able to
do is undo those changes, switch branches, then re-do them. Actually,
it would be even better to lift those changes off of the wrong branch,
laying them gently on top of the branch you meant to be in.
Fortunately, Git provides a command called stash that does exactly
that.

If you’ve not only edited, but committed by mistake, un-commit the
changes first (see “Committed by Mistake” on page 107) before
proceeding with the following steps. If you’ve just committed in the
wrong branch, see “Committed in the Wrong Branch” on page 108
instead.

1. Make sure you’re in the right directory.

2. Stash your uncommitted changes:

git stash

3. Switch to the branch you wish you had been working in:

git checkout the-right-branch

Switched to branch 'the-right-branch'

4. Use stash pop to apply the changes there:

git stash pop

104

Edited the Wrong File

You opened a file to look at it, but then your cat walked across the
keyboard.

You’re not sure what was added or deleted. You just want to go back to
the way things were at the last commit. For this, use checkout—it’s
not just for switching branches!

1. Make sure you’re in the right directory.

2. Use git status to see what files were accidentally modified. For
example:

$ git status

On branch main
Changes not staged for commit:
 (use "git add <file>..." to update what will be
committed)
 (use "git checkout -- <file>..." to discard
changes in working directory)

 modified: dont-change-this.md

3. Use git checkout -- <file> to undo the changes. For
example:

git checkout -- dont-change-this.md

TIP The output of the git status command tells you
how to use git checkout this way.

105

Merge Conflict

When two changes happen in the same place in the same file, Git can’t
merge without your help. You need to edit the file and decide which of
the two changes to keep.

Most of the time, a merge conflict happens when you pull. Git tries to
fetch the changes and merge them into the current branch, but can’t
resolve the overlapping changes. Git will tell you which file (or files)
have a conflict.

When you open the file, the merge conflict looks like this:

<<<<<<< HEAD
Some content that was changed by one person
=======
Other content that someone else changed
>>>>>>> 9af9d3b

HEAD is usually a pointer to the latest commit in the branch you’re on.
The other label can be another branch name or a hash--a number
representing another commit.

All you need to do is decide which version of the content you want to
keep and then delete the merge conflict markers (<<<<<<<, =======,
>>>>>>>).

After you’ve resolved all the changes in that way, just stage and
commit again.

TIP If you have a merge conflict when trying to merge a
pull request, it’s easiest to pull and resolve the merge
conflict locally, then push and try again.

106

Detached HEAD

HEAD is a pointer to the currently checked out commit in the current
branch—like a YOU ARE HERE arrow. Usually, this is the latest commit
in the branch. If you check out an older commit, you enter a detached
HEAD state, meaning that the HEAD doesn’t point to the latest commit,
as Git normally expects. With a detached HEAD, anything you commit
can only be reached later by knowing the commit’s hash. This is
tremendously inconvenient and doesn’t give Git the opportunity to
keep track of your work, since you aren’t really on a branch.

• If you’re just looking around at an older commit and don’t plan to
make changes there, don’t worry about the detached HEAD. When
you’re ready to go back to working, use git checkout HEAD to
go back to the latest commit in that branch, or git checkout
{branch} to go to the latest commit in a different branch.

• If you’ve gone back to the older commit to do more work or fix
something, use git checkout -b {new-branch-name} to start
a new branch there.

WARNING Don’t commit with a detached HEAD.

Staged by Mistake

You edited the right file the right way, but then you added it to the
staging area too hastily. You don’t want to undo your changes to the
file, but you would like to remove it from the next commit. This is one
of the uses of reset. You can also use reset to do more drastic
rollbacks—you can undo entire commits if needed.

1. Make sure you’re in the right directory.

2. Use git status to see what files were accidentally modified. For
example:

$ git status

On branch main
Changes to be committed:

107

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README
 modified: dont-commit-this.md

3. Use git reset to remove the file from the next commit. For
example:

git reset HEAD dont-commit-this.md

TIP The output of the git status command tells you
how to use reset to unstage changes.

Committed by Mistake

If you’ve committed too hastily, you can un-commit your changes so
long as you haven’t also pushed them.

1. Make sure you’re in the right directory.

2. Use git status to check what branch you’re on. If necessary,
change to the branch where you erroneously committed. For
example:

$ git checkout the-wrong-branch

Switched to branch 'the-wrong-branch'

3. Use git reset to un-commit the changes:

git reset HEAD~ --soft

You can re-commit the changes later if you like.

If you want to move the changes to another branch first, you can use
git stash (see “Edited in the Wrong Branch” on page 103).

108

Committed in the Wrong Branch

If you have committed—perhaps several times—on the wrong branch,
you can rebase your changes to the correct branch.

1. Check out the first commit in the series of commits you want to
move:

 git checkout commit hash

2. Use rebase to move it to the tip of another branch:

 git rebase new-branch

3. Use git log to verify that you did what you expected:

 git log --oneline

Lost Some Changes to History

If some changes got lost, reverted, or overwritten by later commits,
you can go back and find them again.

Retrieve All Changes from an Old Commit

If you want to retrieve changes so you can work on them again, go
back to the old commit (for example, d555f66) and grab them:

1. Use git checkout to check out the old commit. Example:

git checkout d555f66

2. Do a soft reset, which uncommits all the changes:

git reset --soft HEAD~1

3. If you like, you can use git status to see what uncommitted
changes you now have.

4. Use git stash to stash the changes.

5. Use git checkout to check out the branch again. If you have
been working in the main branch, use git checkout main:

109

$ git checkout main

Previous HEAD position was d555f66 Committing some
lovely changes
Switched to branch 'main'
Your branch is up to date with 'origin/main'.

6. Use git stash pop to apply the changes.

You can continue working on the changes, then commit and push when
you’re ready.

Grab an Old Version of a File

You can check out a version of a file from a specific commit:

• git checkout commit file

This restores your working copy of the file to the way it was in that
commit. You can then stage and commit the changes.

Example

git checkout d555f66 my-file.txt

Pushed by Mistake

If you’ve pushed a commit erroneously, your mistake is now available
to other people. Fortunately, there is a way to "undo" a push.

TIP Let other people know about the bad push so that they
don’t pull until you fix the repo.

It can be useful to log on to the git host to see what actually got pushed.

110

Revert a Bad Push

Here are the steps to revert a bad push:

1. Use git log to show a list of recent commits, and identify the
one you pushed by mistake. The --oneline option makes the list
easier to read. The list is sorted from newest to oldest. Example:

$ git log --oneline

d9fa1d2 (HEAD -> master, origin/master,
origin/HEAD) This commit is a mistake!
d555f66 Committing some lovely changes

2. Use git revert and the commit number (or commit hash) to
create a new commit that un-does everything in the bad commit.
Example:

git revert d9fa1d2

3. A screen appears where you can type a commit message, or just
keep the default message. Saving and exiting are different
depending on which editor Git is set up to use.

– If you see a colon at the bottom of the screen, you’re
probably using vi or Vim. Type wq and press enter.

– If you see a list of commands at the bottom of the screen,
you’re probably using Nano. Press Control-o then
Control-x.

4. You can use git status to see that you have a new commit,
ready to push:

$ git status

On branch main
Your branch is ahead of 'origin/main' by 1 commit.
 (use "git push" to publish your local commits)

5. Push the commit with the git push command:

git push

111

That takes care of fixing the repo. Anyone who pulls will now get the
entire history, including both the mistake and the fix, and all will be
right with the world.

This operation leaves things as they were before you made the
changes that you mistakenly pushed. In other words, your files will
look like they did after you committed "Committing some lovely
changes," and all the work you did in "This commit is a mistake" has
been undone.

More trouble

For more help and advice, check out Dangit, Git!?!
(https://dangitgit.com/)

112

113

Glossary

admonition

A note, warning, or other call-out that draws attention to a block of
content.

add

In Git, to stage changes for a commit.

AsciiDoc

A markup language invented by O’Reilly for articles, books, and other
documentation.

authenticate

To verify identity for the purpose of access to a protected system or
capability.

Bash

A Unix/Linux shell and language that lets users execute commands and
programs.

branch

A series of commits representing changes to one or more files in a Git
repository.

branching

Creating and using branches.

change

In Git, a modification, creation, or deletion of a file.

checkout

In Git, to switch to a different branch or restore a file. + In centralized
source control, to lock a file, preventing others from editing it.

114

chmod

A shell command that changes file permissions.

client

Hardware or software that accesses a service. A web browser is a client
to a webserver, and a Git client accesses a service provided by a Git
host.

clone

In Git, to make a complete local copy of a remote repository so you can
work with the files on your computer.

cloud

Someone else’s computer.

commit

In Git, to save your changes to the local repository. + A group of
changes saved together using the commit command.

commit hash

A unique number that identifies a commit.

commit message

A summary of the purpose of a commit, consisting of a subject line and
an optional body, that helps others understand the purpose and scope
of the changes.

credentials

Proof of identity, usually a username and a password or token, used
for authentication.

CSS

Cascading Style Sheets, a style sheet language for defining the look and
feel of a document written in HTML or another markup language.

115

DITA

Darwin Information Typing Architecture, an XML-based document
markup language.

diff

A representation of the lines that have changed in a file.

div

A division or section in an HTML document, specified with a <div> tag.

docs-as-code

A content or documentation process that uses source control to
manage documentation as if it were source code.

dynamic site

A site that is generated or modified at the time it is displayed. See
static site.

Extensible Markup Language

See XML.

fenced

Delineated with a series of characters. For example, a fenced code block
is marked with three backticks (`) at the top and bottom.

fetch

In Git, to download changes from the remote repository.

frontmatter

Metadata at the start of a file, often including information such as the
title, author, and date.

FTP

File Transfer Protocol, a way of exchanging files between your
computer and a server.

116

Git

A distributed source control system.

Git Centralized Workflow

A very simplified Git branching strategy characterized by no branching
at all.

Git wiki

An additional repository, attached to a Git repository, for the purpose
of displaying and managing content (often, content about the Git
repository).

Git wiki structure

A content structure in which the display paths or URLs to content
pages are defined by the directory paths of the files that make up the
content.

GitHub Flow

A Git branching strategy, characterized by short-lived working
branches that merge directly to the main branch.

hash

A unique, fixed-length string, output by an algorithm, used to index a
piece of data. See commit hash.

HEAD

In Git, a pointer to the current commit.

host

A server, often on the web. A Git host provides access to Git
repositories, a web host provides access to websites, and so on.

HTML

HyperText Markup Language, the standard markup language for
creating web pages.

117

JavaScript

A programming language that enables the creation of interactive
features on web pages.

JSON

JavaScript Object Notation, a format for storing and transporting data.

LaTeX

A document preparation system for high-quality typesetting.

Linux

A family of Unix-like operating systems first designed by Linus
Torvalds in 1991.

local

On your own computer.

Markdown

A simple markup language originally designed as an easy way to write
HTML pages.

markup language

A way of indicating display formatting and other information within a
document.

merge

In Git, to combine two sets of changes into one branch.

merge conflict

In Git, a merge that cannot be completed automatically because the
same parts of the files have been modified in both sets of changes.

metadata

Information about the content in a file, or about the file itself.

118

origin

In Git, a short name for the remote repository you push and pull from
by default.

package manager

A tool for installing software.

PDF

Portable Document Format, a file format developed by Adobe in 1993
to present documents consistently across software, hardware, and
operating systems.

permissions

Settings that specify what actions can be taken and by whom. For
example, file permissions can specify who can read, write, or execute
the file.

pull

In Git, to fetch and merge changes from a remote to your local
repository.

pull request

In Git, a set of proposed changes to be approved and then merged into
a branch.

push

In Git, to upload changes from your local repository to a remote.

Python

A popular programming language.

Python Markdown extensions

A set of additional features and syntax provided with the Python
implementation of Markdown.

119

rebase

In Git, to move commits from one branch to another.

recursion

See recursion.

remote

A remote repository.

remote repository

A version of your project that is hosted on the network or online
rather than on your computer. Also known as the remote repo or
simply the remote.

repo

Repository.

repository

In Git, a collection of files and the entire history of all changes made to
them.

reStructuredText

A markup language used primarily for documenting Python programs.

Samba

Open source software that runs on Unix or Linux to enable
communication with Windows clients over a network.

script

A computer program that automates the execution of commands or
tasks.

server

A computer or application that provides a service for other programs
or devices, which in turn are called clients.

120

Sharepoint

A web-based collaboration platform that integrates with Microsoft
Office and is often used to manage and store documents.

shell

A program that lets users type commands for the operating system to
execute.

source control

A way of tracking and managing changes to code or other content.

stage

In Git, to specify which changes to save in the next commit.

staging area

In Git, the tree that stores all the changes that are to be included in the
next commit.

stash

In Git, to record the current state of the working directory and revert
the working directory to the previous commit.

static site

A site composed of HTML pages or other documents that are made
available exactly as stored, as opposed to a dynamic site whose pages
are rendered on the fly when they are requested. A static site often
performs better and can be more secure, but lacks some of the
capabilities of a dynamic site.

static site generator

A tool that builds a static site.

tag

A label.

121

token

A long string of random characters use in authentication, often in place
of a password.

TOML

Tom’s Obvious, Minimal Language, a text format for configuration files
or metadata.

Unix

A family of operating systems designed at Bell Labs in the 1970s, that
Linux is like.

unstage

In Git, to remove previously staged changes from the upcoming
commit.

version control

See source control.

WebDAV

Web Distributed Authoring and Versioning, an HTTP extension that
lets clients perform remote operations on content.

wiki

A structured content site, often edited and managed by the readers
themselves, that collects information about a particular topic.

wildcard

A character that stands in for one or more characters to allow multiple
possible matches to a single string.

working branch

In Git, a temporary branch created for working on a particular set of
content or code changes.

122

working directory

The folder on your local computer where you store the content you are
editing.

WYSIWYG

What You See Is What You Get, an editing experience that mimics the
appearance of the document in its final form.

XML

Extensible Markup Language, a set of rules for encoding documents
with tags that are both human-readable and machine-readable.

YAML

Yaml Ain’t Markup Language, a text format for configuration files or
metadata.

123

Thanks

I couldn’t have put this book together without help from a few people:

Dennis Gentry, Alan Grover, Ben Hamilton, Meliana Handoko, Steve
Lacy, and anyone I’ve ever bothered about Git.

